An equilibrium method for continuous-flow cell sorting using dielectrophoresis.
نویسندگان
چکیده
Separations represent a fundamental unit operation in biology and biotechnology. Commensurate with their importance is the diversity of methods that have been developed for performing them. One important class of separations are equilibrium gradient methods, wherein a medium with some type of spatial nonuniformity is combined with a force field to focus particles to equilibrium positions related to those particles' intrinsic properties. A second class of techniques that is nonequilibrium exploits labels to sort particles based upon their extrinsic properties. While equilibrium techniques such as iso-electric focusing (IEF) have become instrumental within analytical chemistry and proteomics, cell separations predominantly rely upon the second, label-based class of techniques, exemplified by fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS). To extend the equilibrium techniques available for separating cells, we demonstrate the first implementation of a new microfluidic equilibrium separation method, which we call isodielectric separation (IDS), for sorting cells based upon electrically distinguishable phenotypes. IDS is analogous to isoelectric focusing, except instead of separating amphoteric molecules in a pH gradient using electrophoresis, we separate cells and particles in an electrical conductivity gradient using dielectrophoresis. IDS leverages many of the advantages of microfluidics and equilibrium gradient separation methods to create a device that is continuous-flow, capable of parallel separations of multiple (>2) subpopulations from a heterogeneous background, and label-free. We demonstrate the separation of polystyrene beads based upon surface conductance as well as sorting nonviable from viable cells of the budding yeast Saccharomyces cerevisiae.
منابع مشابه
Continuous sorting of microparticles using dielectrophoresis.
Sorting of particles such as cells is a critical process for many biomedical applications, and it is challenging to integrate it into an analytical microdevice. We report an effective and flexible dielectrophoresis (DEP)-based microfluidic device for continuous sorting of multiple particles in a microchannel. The particle sorter is composed of two components-a DEP focusing unit and a Movable DE...
متن کاملA miniaturized continuous dielectrophoretic cell sorter and its applications.
There is great interest in highly sensitive separation methods capable of quickly isolating a particular cell type within a single manipulation step prior to their analysis. We present a cell sorting device based on the opposition of dielectrophoretic forces that discriminates between cell types according to their dielectric properties, such as the membrane permittivity and the cytoplasm conduc...
متن کاملInverted Open Microwells for Analysis and Functional Sorting of Single Live Cells
We present a novel method for the isolation, functional analysis and sorting of single cells or small cellular aggregates. Inverted open microwells featuring a microchannel on top, an open air-fluid interface on bottom side and embedded electrodes were implemented on flexible-PCB technology. Microwell arrays in pitch with standard microtiter plates were implemented. K562 cells were delivered to...
متن کاملNumerical Model of Streaming DEP for Stem Cell Sorting
Neural stem cells are of special interest due to their potential in neurogenesis to treat spinal cord injuries and other nervous disorders. Flow cytometry, a common technique used for cell sorting, is limited due to the lack of antigens and labels that are specific enough to stem cells of interest. Dielectrophoresis (DEP) is a label-free separation technique that has been recently demonstrated ...
متن کاملMarker-specific sorting of rare cells using dielectrophoresis.
Current techniques in high-speed cell sorting are limited by the inherent coupling among three competing parameters of performance: throughput, purity, and rare cell recovery. Microfluidics provides an alternate strategy to decouple these parameters through the use of arrayed devices that operate in parallel. To efficiently isolate rare cells from complex mixtures, an electrokinetic sorting met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 80 9 شماره
صفحات -
تاریخ انتشار 2008